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Abstract. A stability analysis for robot manipulators under the influence of external forces is
presented. Several control objectives are considered: rejecting the external force as a source of
disturbance, complying to the external force as a generalized mass-spring--damper system, and
actively controlling the external force when a dynamic model for the environment is available.
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1. INTP,.ODU CTION

In most robotic applications, the robot is subject to a variety of external forces (in addition to
the inter-link and base constraint forces). These forces may be due to disturbances, interaction
with a work piece, collision with obstacles etc. The performance of the robot controller in this
type of situations is critical to the success of the overall operation. This problem has generated
a lot of interest recently [1-8] but the stability analysis and control design is based on either
open loop linearization or exact cancellation of the noulinear arm dynamics. Insight can be gained
by the linearized analysis, but the results are necessarily local in nature, and a global analysis
is always preferable for nonlinear control systems. The method of the exact compensation for
the arm dynamics requires the complete knowledge of the arm dynamical model. In practice,
this information is typically inexact and the real time computation load presents implementation
difficulties. This paper analyzes the force interaction problem when the control law has the simple

structure of the proportional-derivative (PD) feedback plus gravity compensation. The Lyapunov
method is used for the stability analysis, with the choice of the Lyapunov function candidates

motivated by the energy consideration. This approach has gained popularity in the position control
problem of a single unconstrained robot arm [9-12]. There has been recent extension to multiple-
arm control [13], and attitude control [14] Other modern control methods can be considered in
this framework [15], though the generality will not be pursued here.

We will consider three scenarios:

(1) The external force is unmodeled and regarded as a disturbance. The control objective is to
maintain a set point or to track a desired trajectory, while rejecting the external force.

(2) The external force is unmodeled but the arm is to accommodate it in the specified directions.
(3) The external force is generated by the interaction between the arm end effector and the

external environment. The control objective is either a pure position control or compliant
force control in some specified directions and position control in the others.
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In the first case, we prove two results that agree with intuition. If the external force converges to a
steady state, then the arm also converges to a steady state, with the set point error proportional to
the disturbance force. If the external force is bounded but possibly persistently time varying, then
the state of the arm is also bounded with the bound proportional to the bound of the disturbance
force. In both cases, the error bound can be made arbitrarily small with a high enough proportional
gain.

In the second case, we require the arm to accommodate the external force by acting as a gen-
eralized mass-spring-damper at its end effector. This approach is very similar to the impedance
control technique [7], but instead of requiring the exact compensation of the arm dynamics and
the external force (which requires the full model information and the force feedback to the joint
torques), the desired impedance is used as a trajectory planning tool, and therefore any stable tracking
algorithm can be used. We also show global stability when an approximate force compensation is
added as an outer loop.

In the third case, the arm is assumed to be in contact with a mass-spring-damper environment.

When the arm is only under the position control (with no consideration of the force of interaction),
a steady state will be reached as long as the contact is maintained for all t/me. When the force is

controlled in some subspace, there are two plausible approaches. First the impedance control idea
is applied and the desired trajectory is modified according to a mass-damper equation until the
actual force is equal to the desired force. Any stable position control law can then be used to track
the desired trajectory. This method is useful for industrial arms where direct joint torque control
is not possible (the low level serve loop is fixed). When the position control law is of the PD type,
the effective closed loop system has the proportional-integral-derivative (PID) structure, and the
desired damping has to be chosen based on the environmental stiffness to ensure stability. For
the case that the joint torque can be commanded (e.g., via direct current control), force feedback
control can be directly designed. When the environment is infinitely rigid, direct unfiltered force
feedback tends to be non-robust with respect to the time delay in the force measurement. The
integral force control law is proposed as a remedy, and coincidentally, it becomes the same control

law obtained in the first approach. If the environment is truly infinitely rigid, the integral feedback
gain can be chosen to be an arbitrary positive definite matrix. For the good transient response and
disturbance rejection, one would like to choose this gain as large as possible. However, we show
that if the environment contains any flexibility at all. no matter how small, the integral gain must
be chosen very small to avoid instability. In other words, the closed loop system is not robust with
respect to the unmodeled fle.,dble dynamics unless the integral gain is chosen very small. Since
flex.ibility is always present in the environment and _he manipulator, this result appears to place a
fundamental limitation on the performance of the force control when the environment is rigid. In
contrast to the past explanation of the instability phenomenon for the direct force feedback applied
to rigid environment, which suggests the culprit to be the unmodeled dynamics (perhaps from
sensors and actuators) [2], our results offer two alternative explanations: time delay in the force

measurement in the direct force feedback case, and excessive gain in the integral force feedback
case.

This paper is organized as follows. In section 2. a general model of a rigid robot arm subject to
an external force is presented. The external force rejection property of the PD position control law
is considered in section 3. The compliant control scheme based on a desired impedance at the arm
end effector is discussed in section 4. Section 5 deals with the case that the external force is due

to the interaction with a mass-spring-damper type of environment.

To simplify the presentation, throughout this paper, a force in the Cartesian space means torque
and force. A Cartesian force (resp. velocity, acceleration) is denoted by a column of two vec-

tors, torque (resp. angular velocity, angular acceleration) and force (resp. translational velocity,
translational acceleration), which we call a spatial fo_'ce (resp. velocity, acceleration).
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2. MODEL FOR A RIGID ARM SUBJECT TO EXTERNAL FOKCE

Consider an N-link rigid arm with the force exerted by the arm end effector f:

M(8)8 + C(8,8)_ + k(8) = r - jr], (2.1)

where 8, @, 8" are the joint displacement, velocity, and acceleration vectors, M(8) is the inertia

matrix, C(8,_)8 is the Coriolis and centrifugal torque, k(8) is the gravity load, r is the control
torque, and J is the Jacobian from the joint velocity to the point of disturbance. The external
force I may be the result of an unmodeled disturbance force (e.g., a human being pushing on the
end effector) or the force of constraint when the arm is in contact with an environment. In the
latter case, if the environment is a generalized mass-spring-damper system, the constrained force
may be modeled by

M_ac + be + k_ = Ar/ (2.2)

where a¢ is the acceleration of the environment at a point C, be is the sum of Coriolis, centrifugal,
gyroscopic and damping forces, k¢ is the sum of the gravity force and spring force, Me is the effective
mass of the environment, A is the Jacobian from the robot tip to the point C. When the arm is in
contact with the environment, the kinematic constraint is given by

+ ]0 = + a (2.3)

J8 -- .4v_ (2.4)

Several special cases are worth noting.

(1) If the arm is unconstrained but holds a payload in its end effector, then (2.2) is the payload

dynamical equation about some point C and .4 is a square nonsingular matrix representing
the Jacobian from the arm tip to C. If C is the center of the mass, then (2.2) is just the
Newton's equation and Euler's equation.

(2) If the environment is a rigid surface and the arm is pushing an object along the surface, then
A is a "tall" matrix, the range of which is the direction that the arm tip is free to move. Eq.
(2.2) is the dynamic equation of the object that the arm is pushing. A T now has a null space,
N'(Ar), the dimension of which does not change. Due to the infinite rigidity assumption, the
force in N'(A r) does no work and only affects the force of constraint.

(3) If the environment behaves like a generalized mass-spring-damper, then be = D, ve and k¢ =
K,(ze - z_,,) where D, and I(, are the generalized damping and stiffness matrices, and v¢

and ze are the velocity and position (suitably parameterized) of the environment. A is the
square nonsingular Jacobian matrix from the arm tip to the environment.

(4) When multiple robot arms (or fingers) grasp (either rigidly or with degrees of freedom such
as in a point contact with friction) an object, the dynamic model is of the same form as

(2.2) -- (2.4) . A is again a tall matrix. The null space of A T now represents the subspace
of contact force that only contributes to the internal force but does no work. If the grasp is
not rigid, then f is constrained to be zero in some subspace.

(5) There can be combination of the cases above. For example, an arm pushing a block along a
soft surface, moving a flexible object along a hard surface, multiple arms handling an object
that is in contact with a surface etc. The dynanfica/model can be generalized to include all
these cases.

The dynamic model given in this section is the basis for the stability analysis in the subsequent
sections. They are an approximation to the reality, due to the unmodeled effect of backlash, friction,
actuator/sensor dynamics and saturation, sampling etc. However, within a reasonable operating
range, the approximation is useful in predicting the arm's behavior.

3. REJECTION OF D[STUilBANCE FORCE

The performance of the PD robot control under an unmodeled external force disturbance is
analyzed in this section. The problem is divided into three cases:

(1) The arm is under the set point contt'ol and f(_) tends to a steady state as t -- co.
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(2) The arm is under the set point control and f(t) is a general time varying but uniformly
bounded signal.

(3) The arm is under the general tracking control and f(t) is a general time varying, uniformly
bounded disturbance.

Only the PD plus gravity control law [9] is discussed in detail. The PD feedback terms can be in

either the joint coordinate or the task (end effector) coordinate. Other types of control laws such as
computed torque [16], operational space exact linearization [17,18,19], PID control [20,21], energy
Lyapunov function based [11,12,22,23] and many others, can be analyzed in the same fashion and
are not covered here.

First consider the case that f -- f,,. Consider the following Lyapunov function candidate:

= I_TM(6)_ + U" (3.1)V

where the first term is the total arm kinetic energy and U has the interpretation of an artificial

potential energy. In the unconstrained arm case (y = 0), two common choices of U are [9]

1
U = _AOTKp-kO (3.2a)

= 2AzTKp-_z (3.2b)U

where A0 = 0 - 0d and Az = z - zd, z is some parameterization of the task space. By taking the
derivative of V along the solution trajectory (with / = 0), it can be shown that the following control
laws

= -KpA0 - + k(0)

r = -lrKvAz - jrI_ + k(O)

would render ')" negative semidefinite. Then by using the Invariance Principle

totic stability about (0 = 04, l) = 0) can be ascertained.

(3.3a)

(3.3b)

[24],globalasymp-

When f ¢ 0, we do not expect global asymptotic stability, but it is intuitive that f ---, f_, should

result in the arm reaching a steady state, also. This behavior is proved below. For simplicity,
consider the case f = f,,. Modify U to

where t;,, is given by

U = I(AO -- KTtjr(_,,)f,,)rIf:,(AO - K7IJT(Od)f_,) (3.4a)

(3.45)

Kp(o,, - + Jr(o,, )I,, = 0 (3.5)

Assume that (3.5) has a solution, _,,. This is true when Kv is sufficiently large. In the task space

feedback case, there is no such requirement. In ')'. the extra terms generated by f (from (2.1) and
(3.4)) cannot be overbounded by the -_rI(j) term. Hence, the previous stability proof fails. To

remedy the situation, we use a modified Lyapunov function candidate proposed in [12]:

= 2#TM(O)_ + U + cAqT3.I(O)O + cAq:rI,[_Aq (3.6)V

where Aq is either one of the following, depending on whether the joint level or the task level error
is used:

Aq = AO- K[t.lr(o._)f,, or (3.7a)

(3.7b)

i
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and c isan arbitrarypositiveconstant• By using the PD controllaw given by (3.3),and after

some algebra,'¢"can be overbounded by

-cApII ql[2- [IOll+ IIAqllIlOII (3.s)

Since '_"consistsof a negativedefiniteterm and an indefinitehigher(third)orderterm, (Aq = 0,0=

0)islocallyexponentiallystable,with the sizeofthe domain of convergenceinverselyproportional
to c. Since c is not used in the controllaw and can be chosen arbitrarilysmall,the domain of

convergenceisinfactthe entirestatespace (thesame argument used in [12]).Hence, we have the

globalasymptotic stabilityabout the point (Aq = 0.0 = 0). This means that the arm willalways

reach a steady stateconfiguration,but willincura positionerrorof

0,, - Od= -K_'zJ(O,,)TL, in the joint level feedback case

z,, -:ca = -Kfzf,, in the task level feedback case.

(3.9a)

(3.95)

If it is known that f,, occurs only in certain subspace, then Kp can be selected large in the cor-
responding direction to reduce the steady state error. This analysis of course remains valid when
the external force is applied at a point other than the end effector. Indeed, if the location of the
disturbance is known, a hybrid joint level position and disturbance rejection controller can be used:

r = -KpAO - I(_0- jT(K,,,..kz+ Kvtk)+ k(O) (3.10)

where Az and k now correspond to the position error astd velocity at the point of disturbance, and
can be obtained via the forward kinematics calcula.tion, and J is the corresponding Jacobian.

Next consider the case that f is a general bounded time varying signal. Define

7 = limsup f(t) (3.11)
t

Now repeat the same Lyapunov stability analysis as above with f_, replaced by 7- Then in the

¢ equation (3.8) , there is an additional term proportional to (ell:,qll + II01l)[]f(t)-711- This is
a first order term. We can no longer state that the arm will reach a steady state. Indeed, if f
is persistently time varying, such a behavior is not expected. What we can conclude is that V is
uniformly bounded, and the ultimate bound of V is proportional to limsup, flY(t) - 711-The detailed
stability analysis follows that in [15].

4. HYBRID POSITION/FORCE CONTROL WITH UNMODELED EXTERNAL FORCE

In the last section, we have considered position control under unmodeled external force. In this
section, we extend our analysis to the case that the arm is equipped with a force/torque sensor and
the control objective is position control in some directions and compliant force control in others.

The approach here is very similar to the impedance control [7] in that the control objective is to
make the arm tip appear like a mass-spring-damper system. The difference is that [7] includes
an exact lJnearization control law so that the desired behavior is obtained exactly if the full model
information is available and the external force is directly canceled, while here, we consider any stable
position control law, and the desired end effector impedance just generates the desired trajectory
for tracking. The stability analysis presented in the last section is also useful in this section,
under the assumption that f is uniformly bounded in t. If the external environment possesses its
own dynamics, then the uniform boundedness of f cannot be asserted a priori. This case will be
considered in the next section.

The desired trajectory is generated from the following desired impedance behavior:

3"[a,,ab_,, + Dab, obj.. + [(d_,(xb_., --.eb,.,) = -(Br f - A,..) (4.1)
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where Md,,, D_,,, Kd,_ are the desired mass, damping and stiffness, a_,.., vb,.., z_,.. are the desired
acceleration, velocity and position (again, suitably parametedzed) of a point b, zb..s is the reference
point for the desired spring, f_,. is the desired force of interaction at the point b, and B is the
Jacobian between the tip of the arm and the point b, i.e.,

B= [ _,b

where r:bis the vectorfrom the arm tipto the point b,and F transforms a vectorr to the cross

product operation r×.

Ifr isgiven by

= jr/+ k(0)+ c(0.b)0+ M(e)u

then _ = u. u can be chosen in severalways to ensure the desiredtrajectorygenerated by (4.1)

isfollowedasymptotically.This iscommonly known as the impedance control[7].However, any

other stabletrackingcontrollaws can be used to trackthe desiredtrajectorygenerated by (4.1).

When the trackingcontrollaw isof thePD type (2.3)as inSection2,then the same analysiscan

be used to assurestabletracking.In particular,when the appliedforceconvergesto a steadystate,

then the desiredarm tip trajectoryconvergesto a setpoint,with a positionerrorproportionalto
the steady stateforce.

Experiments were conducted on a PUI_[A 560 arm. where the force/torqueoutput isused to drive

the trajectoryplanner (4.1),and the Unimation controllerisused to track the desiredtrajectory
(by running in the Internal Alter Mode in VAL II). For a range of M_,, Dd_, and Kd,,, a reasonable
behavior is obtained when force and torque are applied to the end effector. If Dd,, is set to be too
small, the end effector visibly jerks, this is due to the inability of the arm control to track a fast
moving desired trajectory.

To obtain a closer approximation of the desired mass-spring-damper behavior prescribed by
(4.1) , one can augment a nominal position control torque re by a force compensation:

r = re + jTf (4.2)

In the case of constant f, there will be no steady state tracking error, since this just reduces to
the standard set point control problem. There may be a concern that the direct force feedback

may be susceptible to the time delay in the force measurement since an algebraic loop is formed.
If f is uniformly bounded in time, at least the stability will not be affected. Indeed, if instead
of the true f, an approximate f_pp_ is used in the control law (4.2) , then the situation is like
in the pure position control case with no force feedback, but in the Lyapunov stability analysis,
f will be replaced by f- f_pp_. Hence, the tracking performance will deteriorate by an amount
corresponding to the size of the force compensation error, but the stability is not affected. In fact,
if f,_p, is not too far off, including it in the control law is better than no force compensation at
all. When the environment has its own dynamics (say a mass-spring-damper system), the above
analysis involving the force feedback is no longer va.lid. Indeed, we will show in the next section
that unfiltered force feedback in the case of very stiff _,nvironment is very non-robust with respect
to the time delay.

By setting Md,,, D_,, and K_,, to different values, different behavior of the arm end effector can
be obtained.

(1) By choosing Da_, = 0, the arm acts as a spring.

(2) By choosing If d,, = 0, the arm acts a damper. If a pulse of external force is applied, a
displacement proportional to the integral of the applied force will result. This case is also
useful in guarded approach to an obstacle. If fb_., is set to the desired force in the direction
of the obstacle, then during the free motion ( before contact) the desired velocity will ramp
up to a maximum. The motion continues until the force of contact increases to the specified
f_,.,. The stability issue related to this scenario is discussed in the next section.
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(3)With Kay, = 0 and /bd..= 0,the arm isin the compliance mode. The arm willmove in the

directionofthe appliedforceand remainsin the new configurationonce the forceisremoved.

This mode isusefulin positioningthe arm by dragging the arm tipby hand.

(4)By choosing B other than the identity,the arm complies at a pointother than the tipof the

arm. In thisway, one can obtainan activeremote centercompliance (RCC) device,which is

usefulfortasksinvolvinginsertions[25].

5. POSITION/FORCE CONTROL WITH EXTERNAL FORCE MODEL

When the arm's end effector interacts with an environment that has its own dynamics then the
boundedness assumption on the external force, which was used in the last section, can no longer
be asserted a priori. In this section, the dynamics of the environment is assumed to be given by
(2.2) . The following control objects are considered:

(1) The arm is under the position set point control.
(2) The arm is under force control in some subspace and position control in its complement.

Only joint level PD plus gravity compensation set point control law is considered. Generalization
to other control laws can be done in a similar manner.

Assume that the environment is passive in the sense that

v_b¢> 0 (5.1)

kc( o)= (5.2)

This is satisfiedifb¢ models the Coriolis,centrifugal,gyroscopic,and damping effects,and the

forcefieldon the environment isconservative(e.g.,spring force).For simplicity,assume there is

no gravityloadon the environment (otherwise,itneeds to be compensated forin the controllaw).

Consider the Lyapunov functioncandidate

1 r 1V - _v¢ ?vI_v_+ _rM(C))_ + U¢ + U (5.3)

where the first two terms are the kinetic energies of the environment and the arm, respectively, and
U is the artificial potential energy as given in (3.2a). By using (2.1) and (2.2) , and the control
law (3.3a), the derivative of V along the solution caJl I)e computed as:

= vT(-bc- k¢ + AT f) + _T(_IQ,__ jr f) + vTk¢

By using the kinematic relationship in (2.4) and the assumption that the environment is passive,

it follows that II _< -_rK_, and e(t) -- 0 as t -- oo. From the kinematic constraint, v, _ 0, also.
Ifence, by using the Invariance Principle [24], the arm and the environment always reach a steady
state, but will incur a steady state error given by

±0,, = - h'_" _.1r( O,,)L,

kc(x,, ) -- .4T fss
(5.4)

If the environment is nonrigid in all directions, then .4 is square invertible, and the steady state
joint error is given by

ae,, = (5.5)

This can be used to solve for .A0,, since _,o is related to 0, via the forward dynamics. If the
environment cannot move, then A is a tall. full rank matrix, where Ar(A r) is the subspace in which
the environment is infinitely rigid. In this case, the steady state joint error converges to a manifold
(called the jam manifold in [13]):

s = {e: 0 - + r,'f ]r[0,, = 0}
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All configurations in S are equilibria of the closed loop system. Some preliminary investigation of
the jam manifold was given in [26], but a general characterization is lacking at the present time:
Even though the jam manifold is not present when the environment is flexible, in reality, the flexible
model is only valid for a finite displacement, beyond which, the rigid model is more appropriate;
therefore, if the steady state error in (5.5) is too large, the rigid model should be used.

So far, only the position control law has been discussed. When the environment is uncertain,
an important mode of operation is position control in some directions and force control in some
other directions. This is what is generally known as the hybrid force/position control problem. A
number of algorithms have been proposed (see [2. Chapters 8 and 9] for a survey). All of them
are based on the partition of the contact force into components in a position control subspace and
an orthogonal force control subspace. However, a rigorous treatment of the closed loop stability of
the hybrid force/position control when the environment is flexible is currently unavailable. Here
we will only address the stability of the force control loop, and show that the control gain should
be selected based on the environmental stiffness, even if there is no unmodeled dynamics which
was suggested in [2] as being responsible for the instability phenomenon observed in apply force
control to a stiff environment. Based on this result, two alternative explanations for the instability
are suggested.

We first partition AT/ in (2.2) into two orthogonal components:

where the columns of E form a basis of the position controLs_ace and columns of _" form a basis
of the force control subspace which is Af(Er). Define E = E T which is the annihilator of E. Note

that E plays the same role as the nonzero columns of the selection matrix in [2] and others. A is
non-singular, therefore,

f = _'(EE"T)-IfE + E( ETE)-lfp

As the dual to force decomposition, the arm tip velocity can also be partitioned into two compo-
nents:

,,--A vprE= [ E]

The arm tip acceleration _ can be similarly partitioned:

where a is the centrifugal and Coriolis acceleration due the configuration dependence of _ and E.
Note that a is quadratic in velocity.

When the arm is not in contact with the environment, the following desired impedance may be
used to drive the arm into contact with the environment and to exert a specified force:

M_,,aE,.. + m_,,oz,.. = -(IE - $e,..) (5.8)

where ae_., and rE,., are the desired acceleration and velocity for the tip of the robot in the force
control subspace.

The rationale behind (5.8) is based on the following:

(1) When the arm is not in contact with the environment, f_ = 0. Then rE,., will ramp up to the
D-1maximum approach velocity d,,fE,,.,. It is a_sumed that if the arm moves in the subspace

N'(ET), it will eventually come in contact with the environment.

(2) Once the arm is in contact with the environm[,nt, it"/e ramps up to .rE,.,, then rE,., and
aE,,. will decrease to zero.
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The question is: How is the step (2) above assured? We will answer this question below.

Assume that the environment is a generalized mass-spring-damper system:

Mseq_ + Osvs + Ks(zv. - zs,.s) = fs (5.9)

For simplicity, let Ma,, = 0 (the desired velocity is proportional to the force error). Now substitute
for fs in the desired impedance equation by using (5.9) . Then the desired velocity is

vs,.. = -Oa, t,(Msots + Dsvs + [Cm(zs - zs,.,) - fs,..) (5.10)

Integrate both sides to get the desired position set point:

i'• s,.. = -D2, x,(Msvs + mE(_s - _s.., ) + Ks (_s(s) - _s.., - K_Is,..) as) (5.11)

Consider a control law of the form:

r = JrF + r_ (5.12)

where EEr F = Fp ' IE is for the force control. Fp is for the position control, and % provides

the gravity compensation. If Fs is a task level PD position control law given by (3.3 b) with the
position set point given by (5.11) , then

FS = -Kp(xs - zm,..) - K_vs
--1

= -(Kv + [(pDI,I,ME)vE --Kp([+ D Z,',Ds)(zE- zs..z- K s &,.o)

2- I{pDZl, Ks (xs(s) - zs,., - [(_tfs,..) ds - Kt, h (5.13)

where h is a constant vector. Note that when the environment is rigid (Ks -- oo), Fs is simply the
integral feedback of the force error:

IFE(t) = -KpOa'-, t, (Is(s) - fE,..(s))ds - Kpzs,., (5.14)

In general, the control law (5.13) is a constant gain PID position controller with a bias.

To analyze the closed loop stability, we first write the dynamic equation for the tip acceleration
O::

= JM-_(Jr(Z - f) - C(0, t})t_) + j8 (5.15)

In terms of components in the force and position control subspaces, we have

+ [(ErZ)-tEr[(2E"T)-_/_ ] (_./M-_C(0,0)0+ J0 (l) (5.16)

Clearly, the position and force control loops arecoupled. This is to be expected since the dynamics
in the two subspace are coupled due to the effective _rm tip mass matrix (JM-1Jr) -l. (When
the environment is infinitely rigid, the ap equation is decoupled from the force control; this will
be shown later.) The stability of the general hybrid Ibrce/position control in this setting will be
considered in the future. Here, we will focus only on the stability of the force control loop by
assuming that the position loop is tightly controlled _o that Ft,- f_, does not affect as. In this

case, we have (assume a non-singular configuration):

_f_(_:M-_Jr_)-'_f_,_,: = (Fs - Yr.) + ,7



where 77containsonly terms thatare quadraticin velocity.Now substituteforFs using (5.13)and

forfs using (5.9),then we have

I'(Ks + gp(z + DZ ,Ds))( E - - IC Vs,..) + gpm2  ,gs - - as

= hi +rl

where hi is a constant.

The linearized closed loop system is of the form

A i: + B;_ + C'_ + D.c = constant

with A, B, C, D, all positive definite matrices (assume the gains are chosen so that this is true). It
is shown in Appendix I that if JlDll is sufficiently small, then the unforced system is exponentially
stable. With a constant forcing term, _, :_. and h all tend to zero as t ---. e_. Therefore, aE, vs and
zs - zs..l - K_lfs,. all tend to zero, which implies ]_ tends to f_,.. as required.

If D is too large, then the system becomes unstable (e.g., consider the scalar case). For our case,

D = I(.D_,', [(E

The significance of D_, lies the in the speed with which the arm approaches the environment.
Large Dd, means a slow approach and small D_, means a fast approach.

If the environment is stiff (large Iis), large Da, is needed for a stable behavior since small D_,,
will cause large integral gain, and hence instability. This instability occurs during the contact
phase and will typically cause a break of the contact, but then the position control law becomes
stable and the arm would start to approach the environment again. A persistent oscillation would
then result with the arm tip "bouncing" off the environment. Hence, the speed of approach to the
environment has to be limited in order to guarantee a stable operation.

If the environment is soft (small Ks), much smaller Dd, can be tolerated without affecting the
stability, hence, the performance as measured by the speed of approach will be better than the
rigid environment case.

The above prediction has been observed in the experiments with a PUMA 560 under VAL II
force control as described earlier. Even though the analysis is done for the control law (5.12) , the
same reasoning holds true for joint level feedback control laws such as the one used in PUMA. A
blackboard was used as the rigid surface and a cardboard box as the soft surface. As expected, the
smallest acceptable value of Dd+, is drastically different, for the two types of surfaces; the difference
in Dd, is by an order of magnitude. For D_+, at the boundary of the stability re,on, persistent
oscillation without breaking off contact is observed: as Dd+, is lowered beyond that point, bouncing
oscillation begins. In contra.st to the instability noted in [2, Chapter 8], where the cause is attributed
to high frequency unmodeled dynamics, here the culprit is in the effective integral gains.

When the environment is stiff, as in (5.17) is appro.'dmately zero. Therefore,

/+;= FE + ,1 (5.17)

Furthermore, the arm motion is decoupled from the force control as seen by rewriting (5.15) as

o, = Ec_v = J M-L jT( F - f) - .]._[-IC(8,_)8 + J8 - a (5.18)

Again assume arm non-singularity, and multiply both sides by Er(jM-tjT) -l, we have

ET(jM-tjT)-tEap -- (Fp - fp) + Er(J.,l[-' Jr)-t(-JM-tC(O,8)8 + J_ - a) (5.19)
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Since the Coriolis acceleration is independent of FE and IE (by assuming aE and v_ are zero),
FE and IE are decoupled from the motion. However. the motion does affect the force through 0

(d'Alembert force) in (5.17) .

Continue with the rigid environment assumption (i.e., aE = 0), if a stable position control law is
used so that r/(t) ---. 0 as t -- _, then a plausible force control law is

FE = KF(fE -- Ie,.. ) + (5.20)

If the eigenvalues of Kr are all different from 1, then fE converges to f,e,., asymptotically (with rate
determined by r/). Furthermore, large Kr means improved transient response and noise rejection
(see [13] for a more detailed discussion). However. any arbitrarily small time delay in the force
feedback loop will cause instability for any Kr > I. since the discrete time equation is of the form

-_fE((N + 1)T) = KrAfE(.VT) + rl((N + 1)T)

where A.fe,_--fE -- rE,.,. This problem is typical to feedback systems containing algebraic loops (rE
is fed directly back to rE), and in part explains the instabifity phenomena observed in the past in
direct force control in a rigid environment (such as noted in [2]).

A remedy for this problem was proposed in [13] by modifying the force control law to

FE= rE.. +c(fz -/E,..) (5.21)

where C is a strictly proper linear filter such that 27 - C has zeros only in the open left half plane
and C has a pole at the origin. The simplest choice of C is just an integrator (integral force feedback
is also used in [8]):

RE = IE,.. - - (5.22)

As noted earlier, when h'e ----ee, this is the same as the control law (5.14) (with KF = KpD2._,)
based on the first approach when Md,, = 0. Therefore, for the infinitely rigid environment, any
De,, > 0 can be used. However, for any KE large but finite, our earlier analysis indicates that D_,,
should be selected very large to ensure stability. A similar requirement exists for the integral force
feedback control (5.22) , also. For this case, the closed loop system is described by

(E_'r(ffrjM-IJT E¥)-IE_T + ME)am + (DE + fftMa')vm + (KE + KFDE)(zr. - zE,.,

+ KFKE (xe(s) -- zE..j - K_l fE,..)ds = h + ,l

where h is a constant. Again, based on the linearized system, the integral gain KFKE must be
sufficiently small to ensure stability. This indicates a discontinuous behavior at K_ = c_: any KF
(and Da,,, in the first approach) can be used when NE = _, but as soon as KE becomes finite,
no matter how large, then [iF must be sufficiently small (or Dd,, sufficiently large). This result is
not entirely surprising since the very rigid case can be considered as a singularly perturbed system
with the infinitely rigid system as the unperturbed case (the fast poles are pushed off to infinity).
As soon as the perturbation becomes nonzero, the poles at infinity emerge into the complex plane,
either from the right or the left, depending on the integral gain. This implies that the infinitely
rigid model is not robust with respect to the unmodeled flex.ible dynamics, unless the integral gain is
chosen sufficiently small. Since flexibility is always present (in force/torque sensor, in joint motors,
etc.), the force integral feedback gain should always be selected sufficiently small to ensure the
closed loop stability.
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6. CONCLUSION

Stability issues involving the control of a robot arm under the influence of external forces are
discussed in this paper. Several different scenarios are considered: position control with the ex-
ternal force as an unmodeled disturbance, compliant control for a bounded external force in some
subspace, and compliant control for a force due to the interaction with an environment whose dy-
namlcal behavior can be modeled. In each of these cases, a stability analysis using the Lyapunov's
method is presented. A new explanation of instability is suggested in the case that the environ-
ment has flexibility and the gains are inappropriately chosen. When the environment is stiff in
the force control subspace, robust (in time delay) stability can be achieved via the integral force
feedback. However, the integral feedback gain should be chosen sufficiently small to account for
possible flexibility in the system. A natural direction for generalization is to adaptively estimate the
environmental stiffness and select the gain accordingly. This topic is currently under investigation
as the next stage of this research.
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Appendix

Appendix I Stability Condition for a Third Order Vector Differential Equation.

LEMMA 1. Consider the system
A_" + B_ + C£'+ Dz = 0

where z E R", A, B, C, D are positive definite matrices. Without loss of generaJity, assume A, B, C, D, are

all symmetric matrices.

/f ][D[[ /s sufficiently small, then the zero equilibrium is globally exponentially stable.

PROOF: Define z = [z, _:, _]T. Consider the quadratic form

V(z) = I:T pz

where

P = dB C + cB cA
dA cA A .

Clearly, for c sufficiently small, the lower block diagonal 2n × 2n submatrix is positive definite. For each such

chosen c, there exists a range for d, say, d E [0. dl(c)], such that P is positive definite. For c and d chosen as

above, V(z) is a Lyapunov function candidate.

The derivative of V(z) along the solution, denoted by k'(z), is also a quadratic form:

V(z) - --:TQz

where

Q = 0 2(cC -dB) dA

-D dA 2(B-cA) .

If we choose d = 6c such that C > 6B, then for e sufficiently small, the lower diagonal 2n x 2n submatrix,

denoted by Q1, is positive definite. Hence, if D is sufi3ciently small in the sense that

IIDII= < 2dAmin( D )Ami n (Q_)

then Q is negative definite. It follows from the standard Lyapunov argument that the zero equilibrium is

globally exponentially stable. |
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